
SStack: Software Stacks for easier and cleaner software builds on
HPC

Strahinja Trecakov
trecakov@nmsu.edu

New Mexico State University
Las Cruces, USA

Nicholas Von Wolff
nvonwolf@nmsu.edu

New Mexico State University
Las Cruces, USA

Mohammad Al-Tahat
tahat@nmsu.edu

New Mexico State University
Las Cruces, USA

ABSTRACT
HPC system administrators and user support teams spend a con-
siderable amount of time on software installation because most of
them that come prepackaged in OS package managers may not be
optimized for our compute resources and network or have desired
compilation features. These installations can be complex due to
specific versions of compilers, dependencies, and message passing
interface (MPI) libraries that all together create disorganization
and are inflexible to manage. This issue is even bigger at smaller
size institutions with limited resources that support heterogeneous
clusters and have to install software for different hardware config-
urations to achieve the best utilization and optimization. Moreover,
many researchers want the freedom tomanage their software stacks
and use only package managers with which they are comfortable.

To lower the learning barriers for our users, enable ease of in-
stalling software for both site administrators and end users, bring
a structured directory tree, and have a hierarchical structure of
modules, we introduce SStack. SStack is a tool that enables the
management of multiple package managers. It provides an easy
way to build software with similar or specific site defaults, keeping
the module hierarchy tied together and easy navigation.

CCS CONCEPTS
• Software and its engineering→ System administration.

KEYWORDS
High-performance computing, package management, system ad-
ministration, SStack

ACM Reference Format:
Strahinja Trecakov, Nicholas Von Wolff, and Mohammad Al-Tahat. 2024.
SStack: Software Stacks for easier and cleaner software builds on HPC .
In In Workshops of The International Conference on High Performance Com-
puting, Network, Storage, and Analysis (SC-W 2024), November 17–22, 2024,
Atlanta, GA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/xxxxxxx.xxxxxxx

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC-W ’24, November 17–22, 2024, Atlanta, GA, USA
© 2024 ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/xxxxxxx.xxxxxxx

1 INTRODUCTION
The New Mexico State University (NMSU) supports around 500
users on one HPC cluster called Discovery. It is a heterogeneous
cluster that grows in batches and consists of different hardware ar-
chitectures [29]. Discovery currently has 1536 CPU cores, 32 GPUs,
17.5 Terabytes of RAM, 1.8 Petabytes of usable storage, and an HDR
InfiniBand network. Due to a lack of a sustainable budget, our hard-
ware life-cycle goes over 7 years and we have to do major upgrades
to the cluster. In 2022, we went through migration and upgraded
our cluster from CentOS 7 to RHEL 8 and with that change, all of
our software stacks had to be rebuilt. We saw this as an opportunity
to restructure how we build packages and create a better and easier
process for both our users and system administrators.

Most HPC clusters are built as large Linux-based homogeneous
clusters that offer low-latency, high-speed interconnects, the fastest
processors on the market, and a great place for new scientific dis-
coveries. Resource allocation and Job Management Systems have
critical roles in every large-scale computing cluster. Slurm [30],
HTCondor [24], PBS [19], and Torque [10] are the most commonly
used schedulers that enable efficient utilization of computing re-
sources. The usual life-cycle of these systems is 5 to 7 years, and
during that time, they do not go under any major upgrades and
mostly keep running the same major version of the OS. Managing
scientific software on such systems is a challenge without a perfect
solution. Users of HPCs run a diverse set of applications that have
to be compiled and optimized for specific hardware in order to
utilize its resources for peak efficiency. The scientific software stack
that gets built on these systems usually has the same life-cycle as
the hardware; however, new applications and their versions with
different build recipes are added constantly [18, 27].

Many package management tools automate parts of the soft-
ware build process that help system administrators and users keep
software stacks up to date and ease up the installation of multiple
versions and configurations [2–4, 12, 17, 21]. Not all package man-
agers are able to utilize package builds; some require packages to be
installed for each recipe, which creates unnecessary use of storage
and management complexity. There are many challenges in the
realm of HPC software. Some efforts to speed up and automate soft-
ware stack re-deployments have already been made [16, 22, 25, 28].
Moreover, the HPC community has been provided with an E4S
[20] software stack that helps accelerate the deployment and use
of more than 80 popular HPC packages.

In this paper, we address our experience using the SStack tool
that we have developed at the NMSU to manage our software stacks
and bring more structure for both system administrators and end
users. It is common for sites to have multiple installations of the
same package managers just so they can avoid dependency, version,

https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx

SC-W ’24, November 17–22, 2024, Atlanta, GA, USA Trecakov, et al.

and compiler issues. With thousands of scientific packages on a
cluster, different versions and configuration builds, usage of dif-
ferent package management tools, and different locations of these
builds, it is hard to locate, modify, troubleshoot, and display those
modules in a hierarchy where all module paths remain structured.
The SStack tool brings us closer to solving the problem of having
software installations scattered around a system by creating a struc-
tured directory tree and integration with Lmod to give a module
hierarchy. This tool provides orchestration and quick deployment
of package managers, easy discoverability of modules, and lowers
the learning barriers for users. We like to believe that the SStack
tool is a "spider web" that links the Wild West of HPC software
together.

The remainder of this paper presents the software hierarchy
and environment modules, an overview of the SStack tool, main
features, use cases, and future work.

2 SOFTWARE HIERARCHY AND
ENVIRONMENT MODULES

Software hierarchy is a very important piece on systems that host
thousands of packages such as HPC clusters. The software hierar-
chy typically breaks down software into layers, where the bottom
layer consists of hardware and OS as the foundation. Packages that
provide systems services are the second layer. The next layer is a
collection of software linked using modules that provide higher-
level functionality such as user interface, data management, or
algorithmic processing. The top layer of the software hierarchy
represents packages that provide specific functionalities to end
users such as scientific software. These packages are composed of
multiple modules that make the whole software system work in
unity and without issues.

HPC users want to have the latest complex and dynamic software
versions available on clusters for their research. These packages are
often challenging to install and maintain because of their depen-
dencies, compilation options, libraries, and MPI distributions. Some
applications have a life-cycle longer than the hardware [12], which
makes it difficult to keep the software stack stable and up to date.
Moreover, users who work on developing software or inspecting
application performance [11] have to customize the source code or
recompile the same piece of software with different optimization
flags to benchmark its performance.

Having different versions of a package brought issues when
running or installing new software because an executable has to
determine the location of its dependencies and libraries to be able to
run. If a package does not find its dependence, it will error out, how-
ever, if it finds a wrong dependency it can produce incorrect results.
In the software engineering field, a software module is a reusable
component of software that consists of all resources needed to per-
form its function. Modules are self-contained, which benefits us in
the development, test, and maintenance phase, and allow us easier
management of complex software systems and reuse of packages.
Discovery of a large number of installed packages has been ad-
dressed by Environment Modules [15]. The Environment Modules
system enables users to list packages on the system and load and
unload them into the user’s environment. This was revolutionary
for users of HPC clusters and was later improved and rewritten in

Lua language. The new, advanced Environment Module system has
been named Lmod [5, 26] and has multiple essential improvements
compared to other module systems.

For years, institutions that run HPC clusters have been working
to improve software management overhead and develop tools that
would help them in this task. Many package managers have been
developed over the past 10 years and have helped system admin-
istrators and users install scientific software easier and without
worrying much about dependencies[2, 12, 17, 21]. Some of those
are widely used within the HPC community and have a large com-
munity of contributors. Conda [2] is a package and environment
manager that runs on Windows, macOS, and Linux. It enables users
to install and update packages and their dependencies in no time
as well as to create environments. It supports many languages and
is popular for Python packages. EasyBuild [21] is a framework that
enables users to manage multiple versions of scientific software
at once. It builds and installs software in parallel autonomously,
creates module files for all installed packages, and uses Lmod to
connect them together. One of the key features is automatic de-
pendency resolution. Spack [17] is a package manager that enables
ease of installation, configuration, upgrades, and removal of scien-
tific software. It was designed for HPC environments, but can be
used anywhere. Written in Python, Spack offers over 6900 package
recipes and a large community of users. Another popular tool is
Nix [12], a multi-platform package manager that provides binaries
instead of automating builds. Its deployment is set on a directory
that keeps the system structure clean. Upgrades to a new version
of software do not interfere with the old version.

3 THE SOFTWARE STACK TOOL
Software hierarchy plays an important aspect on every system be-
cause by breaking down software into layers, developers, and users
can easily test, maintain, reuse, and troubleshoot packages. Tools
mentioned in the previous section help us install software quicker,
their dependencies and recipes, and easier load/unload different
paths and directories into user environments. However, not all of
those tools provide an easy way to install common software build
tools with sane or site-specific defaults for both system adminis-
trators and end users. Also, those tools do not provide an option
to represent all software on an HPC cluster in a hierarchical struc-
ture. With this challenge in front of us, staff at NMSU’s HPC team
has developed SStack 1, the Software Stack tool, that is written in
Python, and can be used by both site administrators and end users
to install software in global(shared) locations and home/project
directories. This tool enables the administration of various popular
package managers in a simple and clean manner. The module path
hierarchy will remain highly structured since it is identical in both
locations.

3.1 Important Terminology and the SStack
Hierarchy

The SStack tool has been developed to help install different software
stacks on HPC clusters. We use below terminology when talking
about the SStack.

1https://gitlab.com/nmsu_hpc/sstack

SStack: Software Stacks for easier and cleaner software builds on HPC SC-W ’24, November 17–22, 2024, Atlanta, GA, USA

• SStack - name of this tool.
• Stack - a single instance or installation of a stack type.
• Stack Type - specific package manager deployed in stack.
• Module - a lua file used by the Lmod Module System.
• Module Tree - a collection of modules. Each SStack data root
has a single module tree it organizes everything under.

• SStack Data Root or Path - top-level directory where SStack
stores stacks, modules, and a stateful JSON database.

3.2 Installation
Installing the SStack is straightforward. Prerequisites for this tool
are:

• Lmod ≥ 8.2.7
• curl, tar, bzip2, git, make
• writable and executable /tmp and $HOME directories

We recommend installing the SStack tool as a stack controlled
by sstack because in the backend it automatically integrates SStack
with the module system without manual setup of module paths. A
helper install script has been provided in our GitHub repository
and is listed below. The SStack stack type leverages pixi to han-
dle Python and its libraries. In Figure 1, we demonstrate various
configurations of installing the SStack tool using a helper script.

Install SStack (Install to default directory in ~/

sstack)

curl -fsSL "https :// gitlab.com/nmsu_hpc/sstack/-/raw/main

/share/install_sstack_latest.sh"

| bash -s --

Install to custom directory

curl -fsSL "https :// gitlab.com/nmsu_hpc/sstack/-/raw/main

/share/install_sstack_latest.sh"

| bash -s -- "/software/sstack"

Install to custom directory and set custom stack name

This can be used to reinstall a broken sstack

installation

curl -fsSL "https :// gitlab.com/nmsu_hpc/sstack/-/raw/main

/share/install_sstack_latest.sh"

| bash -s -- "/software/sstack" "latest -el7"

Figure 1: Different install options.

The SStack tool offers a few different command options, such
as: ’install’ to install a new software stack; ’modules’ to manage
installed module files; ’remove’ to remove an existing software stack;
’show’ to list all installed stacks, available types, etc.; ’update’ to
update a software stack and regenerate module file. Moreover, it
includes an extensive help system where ’--help’ flag can be added
to list different options, arguments, and subcommands.

When it comes to the SStack structure, every SStack instance
consists of modules and stacks directories, and a stacks.json file. The
modules directory holds lua files of each Stack Type on the system,
while stacks directory is the parent location of all different stacks
installed. stacks.json file holds all important information about the
user’s SStack tool. Figure 2 shows the directory tree structure of
the SStack tool.

data_root (Default:~/sstack/osID_name)

modules

stack_type

stack_name.lua

stacks

stack_type

stack_name

stack_installation_data

...

stacks.json

Figure 2: SStack directory tree structure.

3.3 SStack Types
The SStack tool enables users to have multiple software stacks of
different types. Those stack types could be Custom, Conda, Easy-
Build, Micormamba, Nix, pkgsrc, pixi, Singularity Registry HPC
(SHPC), Spack and SStack.

The custom SStack type allows users to install packagesmanually
while still keeping a tree structure and hierarchy of packages. For
example, if wewant to build a custom software version named 2023a,
we need to run ’sstack install -t custom -n 2023a’. The SStack tool
creates four directories (builds, modules, packages, sources) under
~/sstack/stacks/custom/2023a/. In these directories, users can install
their software and create module files for corresponding software in
the ~/sstack/stacks/custom/2023a/modules/. directory. To activate the
module system to use module files in the mentioned directory, users
will need to run ’module use ~/sstack/modules’. Now, all modules
found in the user’s ~/sstack/stacks/custom/2023a/modules/ directory
will be usable by the module system. The custom SStack type is
great for containers.

Conda [2] is an open-source package management tool that en-
ables users to quickly install software and create software environ-
ments. These software environments can contain different package
versions and dependencies, that enable their users to work without
worrying about package conflicts. SStacks makes the Conda module
structure easier to navigate and allows users to create a module file
for a Conda virtual environment. To do it, users will need to create
a Lua file in their modules directory for this SStack type.

Micromamba [6] is a minimalistic distribution of Conda. It can
be used to deliver custom Conda and Miniconda deployments with
a small footprint and minimal dependencies. Users can easily install
Micromamba with SStack and create virtual environments that are
compatible with it, just like Conda users. Micromamba has conflicts
with Conda, EasyBuild, and Spack, which means that those stacks
cannot be loaded with the Micromamba stack.

Another package manager for Linux and Unix systems that
SStack supports is Nix [13, 14]. It enables the installation of many
software packages and configurations and ensures its reliability by
placing its builds in the read-only Nix store with a hash prefix fol-
lowed by the package name and version. Nix package manager was
containerized with Apptainer for portability and made available
through SStack Tool.

SC-W ’24, November 17–22, 2024, Atlanta, GA, USA Trecakov, et al.

Pkgsrc is a package manager containing over 26,000 third-party
software that is easily deployable on any Unix platform [8]. Binaries
produced by pkgsrc can be used without compilation from the
source. Using SStack to install pkgsrc binaries is simple and keeps
software organized.

Pixi is a cross-platform (Windows, Mac, and Linux) and multi-
language (Python, R, C/C++, Rust, Ruby, and many other languages)
package manager and workflow tool built on the foundation of the
Conda ecosystem [7]. It provides developers with an exceptional ex-
perience and enhances the Conda ecosystem with a project-focused
approach that goes beyond the traditional emphasis on environ-
ments.

SStack works well with EasyBuild [21] and Spack [17] package
managers. Both of these were designed to simplify complex builds
and installations of software on HPC. There are many similarities
between these two tools, however, Spack supports Linux and ma-
cOS, whereas EasyBuild Linux and Cray PE. They also differ in the
command line interface and many other aspects.

Singularity Registry HPC [9] allows users to use containers that
are optimized for performance in an HPC environment. It allows
users to download pre-build container images that are ready to
run software consistently across different systems. SHPC supports
SingularityCE, Podman, and Docker container technologies and
Lmod and Environment Modules module systems.

SStack is a tool to manage common HPC package managers,
referred to as stacks, such as Spack, Conda, Easybuild, pkgsrc, and
many more. It handles opinionated deployment, organization, and
integration with these stacks. Lmod modules and hierarchy are
leveraged to allow easy loading of these tools and their packages.
Furthermore, the SStack module hierarchy allows for package/mod-
ule searching across multiple stacks and even multiple installations
of the SStack data root (home, project, global, etc.. directories).

$ module avail

------- /fs1/home/user/sstack/rhel_8/modules -------

conda /2023a pkgsrc /2024a spack /2023a (D)

------- /fs1/software/sstack/rhel_8/modules --------

conda /2022a conda /2023a conda /2024a (D)

custom /2022a custom /2023a custom /2024a (D)

pixi /2024a spack /2022a spack /2023a sstack/main

----------------- /etc/modulefiles -----------------

pmix /2.2.5 pmix /3.2.3 pmix /4.1.2 (D)

----------- /fs1/software/sstack/modules -----------

os/centos_7_test (S) os/centos_7 (S)

os/rhel_8_test (S) os/rhel_8 (S,L,D)

------ /usr/share/lmod/lmod/modulefiles/Core -------

lmod settarg

Figure 3: Module hierarchy.

4 USE CASES AND FEATURES
We deployed SStack to production at New Mexico State University
in August of 2022 and since then we have seen an increase in our

users utilizing this tool. Themain advantage that the SStack brought
to our users is a module hierarchy that is identical no matter of
location where it has been installed. Moreover, all the module paths
can remain highly structured and are easily discoverable. In figure
3, we represent available modules on a production system, where
conda/2023a and spack/2023a stacks are installed in the user’s home
directory under ~/home/user/sstack/rhel_8 with the same directory
tree structure as described in the previous section.

On the other hand, SStack enables users to distinguish what
software has been compiled for what OS distribution. SStack has
removed a lot of stress and troubleshooting time our customers
had when loading the wrong OS distribution compiled binaries
in their user environment. Using Linux container virtualization
technology, called Apptainer (previously known as Singularity)
[1, 23], we enable users to run deprecated legacy software compiled
for CentOS7 run on RHEL8 by treating Singularity Image File(.sif)
as an executable.

SStack enables site administrators to add software stacks pe-
riodically without confusing users about what stack they should
load. The tool facilitates a clean and structural representation of
all stacks and modules. In Figure 3, we can see Discovery’s mod-
ule hierarchy, different software stacks, and stack types. We have
two software stacks, os/centos_7 and os/rhel_8 (which is also sticky,
loaded, and default). The os/rhel_8 global software stack has 10
stack types with their names based on the stack type and the year
the stack type was created. Since HPC clusters often require mul-
tiple package manager installations tailored for specific hardware
and/or compilers, these installations should be separated from other
installations. The SStack tool supports multiple stacks of the same
stack type as we can see in figure 3 as well. There are 6 different
stack types out of 13 installed on the system under rhel_8 stack of
which 3 are installed locally in the user’s home directory and the
rest are globally installed. This layout allows us to communicate to
our users about a possible deprecation of the global software stack
and administration-wise it makes it easy to decommission a stack
without worrying about possible dependency issues. Moreover, the
utilization of CentOS binaries via container technology becomes
less confusing due to the requirement of adding the os/centos_7
data root to the user’s $PATH by running ‘module load os/centos_7‘.

Figure 4 presents the global SStack directory tree on a production
system with 5 different stack types and many stacks. The SStack
tool enables users to deploy their software by the released date of
the stack or any name that users would like to give to that stack.

4.1 Example of installing Spack stack using
SStack tool

The SStack tool enables ease of installation and usage of different
package managers as its stacks. Figure 5 shows detailed steps on
how to install the Spack stack with stack name 2023a, load the Spack
stack that was previously created, install a zlib package using the
Spack package manager, and use the ‘module spider‘ command to
locate zlib module.

4.2 Module files and search
Module files are easily manageable by using ’sstack modules’ com-
mand. This command allows users to manage default modules for

SStack: Software Stacks for easier and cleaner software builds on HPC SC-W ’24, November 17–22, 2024, Atlanta, GA, USA

~/sstack

centos7

modules

spack

2022a.lua

stacks

spack

2022a

rhel8

modules

custom

2022a.lua

2023a.lua

2024a.lua

spack

2022a.lua

2023a.lua

pixi

2024a.lua

sstack

main.lua

conda

2022a.lua

2023a.lua

2024a.lua

stacks

custom

2022a

2023a

2024a

builds

modules

packages

sources

spack

2022a

2023a

pixi

2024a

sstack

conda

2022a

2023a

2024a

stacks.json

Figure 4: SStack directory tree structure on the Discovery
cluster.

each stack type, regenerate stack module file, and display stack
modules.

$ module use ~/ sstack/modules

$ module load sstack

$ sstack install --name 2023a --type spack

...

Stack Successfully Installed!

+-------+-------+---------+----------------+

| Name | Type | Version | Path

+-------+-------+---------+----------------+

| 2023a | spack | 0.18.0 | ~/ sstack/stacks/spack /2023a

+-------+-------+---------+----------------+

$ module load spack /2023a

$ spack --version

0.18.0 (c09bf37ff690c29779a342670cf8a171ad1b9233)

$ spack install zlib

[+] /home/username/sstack/stacks/spack /2023a/opt/spack/

linux -fedora35 -x86_64_v3/gcc -11.3.1/ zlib -1.2.12 -

ojxmrh7kuyqszihdl5573b4pjadftkld

$ module spider zlib

--

zlib: zlib /1.2.12 - ojxmrh7

--

You will need to load all module(s) on any one of the

lines below before the "zlib /1.2.12 - ojxmrh7" module

is available to load.

spack /2023a

Help:

A free , general -purpose , legally unencumbered

lossless data -compression

library.

Figure 5: Spack stack installation using SStack tool.

$ module spider python /3.10.8 -2023a-gcc_12 .2.0- hvrnktz

--

python: python /3.10.8 -2023a-gcc_12 .2.0- hvrnktz

--

You will need to load all module(s) on any one of the

lines below before the "python /3.10.8 -2023a-gcc_12

.2.0- hvrnktz" module is available to load.

spack /2023a gcc /12.2.0 -2023a-gcc_8 .5.0- e643dqu

Help:

The Python programming language.

Figure 6: Module spider.

Modules are searchable via ‘module spider‘ command. For exam-
ple, if a user searches for a Python package using ‘module spider‘
command, the Lmod will display different available versions of
this package across all stacks on the system. This command also
allows users to find more information about this specific package
by appending the module’s full name at the end of the command.
As shown in Figure 6, the Lmod lists what stacks and modules need
to be loaded before the Python package. By default, SStack adds the
name of the stack 2023a to the package name for easier recognition

SC-W ’24, November 17–22, 2024, Atlanta, GA, USA Trecakov, et al.

and usage. SStack supports multiple data roots and allows loads of
multiple packages from different stacks and data roots. Users can
use packages that are installed via Spack in their home directories
and some that are globally installed simultaneously. This tool has
some limits implemented and will prevent loading two stacks simul-
taneously which could cause dependency issues. On the other hand,
if a user modifies the package manager configuration to generate
module files in non-default locations, SStack will handle this as
long as the package manager is aware of the module location.

To enable the searchability of local and global modules we have
added the local path /home/user/sstack/osID_name/modules and
global path /sstack/osID_name/modules to the $MODULEPATH of
each user. The local path is listed first and will take precedence in
the module hierarchy.

5 SUMMARY
With the rapid growth of HPC software and the increase in its
complexity, management of these software stacks becomes time-
consuming and difficult. In this paper, we have reviewed some
software management tools and environment modules that are cur-
rently state-of-the-art and addressed some of the missing pieces.
We introduced SStack, a software stack tool to manage package
managers. It provides an ease of building common package man-
agers with sane or site-specific defaults in a structural hierarchy.
Moreover, using Lmod, we connected all the package managers and
software installed using SStack and made them searchable across
multiple stacks. This tool helped novice users manage their soft-
ware stacks without needing extra help from system administrators
to deal with package manager installations, dependencies, module
configuration, and discoverability across stacks. SStack is available
online at https://gitlab.com/nmsu_hpc/sstack and we would like to
encourage other institutions to try it out.

ACKNOWLEDGMENTS
New Mexico State University Discovery is directly supported by
the National Science Foundation (OAC-2019000), the Student Tech-
nology Advisory Committee, and New Mexico State University and
benefits from inclusion in various grants DoDARO-W911NF1810454;
NSF EPSCoR OIA-1757207; Partnership for the Advancement of
Cancer Research, supported in part by NCI grants U54 CA132383
(NMSU)). We thank all past and current members of the NMSU’s
High-Performance Computing Group for their hard work over the
years.

REFERENCES
[1] 2024. Apptainer. https://apptainer.org/.
[2] 2024. Conda. https://docs.conda.io/en/latest/.
[3] 2024. Hashdist. http://github.com/hashdist/hashdist.
[4] 2024. Homebrew. http://brew.sh.
[5] 2024. Lmod. https://lmod.readthedocs.io/en/latest/.
[6] 2024. Micromamba. https://mamba.readthedocs.io/en/latest/.
[7] 2024. pixi. https://pixi.sh/latest/.
[8] 2024. pkgsrc. https://www.pkgsrc.org/.
[9] 2024. SingularityHPC. https://singularity-hpc.readthedocs.io/en/latest/.
[10] Inc Adaptive Computing Enterprises. 2023. TORQUE. In Administrator

Guide. https://support.adaptivecomputing.com/torque-resource-manager-
documentation/.

[11] Mohammad Al-Tahat, Strahinja Trecakov, and Jonathan Cook. 2022. AppEKG:
A Simple Unifying View of HPC Applications in Production. In 2022 IEEE/ACM
International Workshop on Performance Modeling, Benchmarking and Simulation

of High Performance Computer Systems (PMBS). 129–134. https://doi.org/10.1109/
PMBS56514.2022.00017

[12] Bruno Bzeznik, Oliver Henriot, Valentin Reis, Olivier Richard, and Laure Tavard.
2017. Nix as HPC package management system. In Proceedings of the Fourth
International Workshop on HPC User Support Tools. 1–6.

[13] Eelco Dolstra, Merijn De Jonge, Eelco Visser, et al. 2004. Nix: A Safe and Policy-
Free System for Software Deployment.. In LISA, Vol. 4. 79–92.

[14] Eelco Dolstra and Andres Löh. 2008. NixOS: A purely functional Linux dis-
tribution. In Proceedings of the 13th ACM SIGPLAN international conference on
Functional programming. 367–378.

[15] J. L. Furlani. 1991. Modules: Providing a flexible user environment. In In Proceed-
ings of the Fifth Large Installation Systems Administration Conference (LISA V).
141–152.

[16] Todd Gamblin and Daniel S. Katz. 2022. Overcoming Challenges to Continuous
Integration in HPC. Computing in Science & Engineering 24, 6 (2022), 54–59.
https://doi.org/10.1109/MCSE.2023.3263458

[17] Todd Gamblin, Matthew LeGendre, Michael R Collette, Gregory L Lee, Adam
Moody, Bronis R de Supinski, and Scott Futral. 2015. The Spack package manager:
bringing order to HPC software chaos. In SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–12.

[18] Markus Geimer, Kenneth Hoste, and Robert McLay. 2014. Modern scientific soft-
ware management using easybuild and lmod. In 2014 First International Workshop
on HPC User Support Tools. IEEE, 41–51.

[19] Robert L Henderson. 2005. Job scheduling under the portable batch system. In
Job Scheduling Strategies for Parallel Processing: IPPS’95 Workshop Santa Barbara,
CA, USA, April 25, 1995 Proceedings. Springer, 279–294.

[20] Michael A Heroux. 2019. The Extreme-Scale Scientific Software Stack (E4S). Tech-
nical Report. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

[21] Kenneth Hoste, Jens Timmerman, Andy Georges, and Stijn De Weirdt. 2012.
EasyBuild: Building Software with Ease. In 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis. 572–582. https://doi.org/10.1109/
SC.Companion.2012.81

[22] Samuel Khuvis, Zhi-Qiang You, HeechangNa, Scott Brozell, Eric Franz, TreyDock-
endorf, Judith Gardiner, and Karen Tomko. 2019. A Continuous Integration-Based
Framework for Software Management. In Practice and Experience in Advanced
Research Computing 2019: Rise of the Machines (Learning) (Chicago, IL, USA)
(PEARC ’19). Association for Computing Machinery, New York, NY, USA, Article
28, 7 pages. https://doi.org/10.1145/3332186.3332219

[23] Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PloS one 12, 5 (2017), e0177459.

[24] Michel J Litzkow, Miron Livny, and Matt W Mutka. 1987. Condor-a hunter of idle
workstations. Technical Report. University of Wisconsin-Madison Department
of Computer Sciences.

[25] Fang Liu, Ronald Rahaman, Michael Weiner, Eric Coulter, Deepa Phanish, Jeffrey
Valdez, Semir Sarajlic, Ruben Lara, and Pam Buffington. 2023. Semi-Automatic
Hybrid Software Deployment Workflow in a Research Computing Center. In
Practice and Experience in Advanced Research Computing 2023: Computing for
the Common Good (Portland, OR, USA) (PEARC ’23). Association for Computing
Machinery, New York, NY, USA, 68–74. https://doi.org/10.1145/3569951.3593607

[26] Robert McLay, Karl W Schulz, William L Barth, and Tommy Minyard. 2011. Best
practices for the deployment and management of production HPC clusters. In
SC’11: Proceedings of 2011 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. IEEE, 1–11.

[27] Zebula Sampedro, Aaron Holt, and Thomas Hauser. 2018. Continuous integration
and delivery for HPC: Using Singularity and Jenkins. In Proceedings of the Practice
and Experience on Advanced Research Computing. 1–6.

[28] Zebula Sampedro, Aaron Holt, and Thomas Hauser. 2018. Continuous Integration
and Delivery for HPC: Using Singularity and Jenkins. In Proceedings of the Practice
and Experience on Advanced Research Computing: Seamless Creativity (Pittsburgh,
PA, USA) (PEARC ’18). Association for Computing Machinery, New York, NY,
USA, Article 6, 6 pages. https://doi.org/10.1145/3219104.3219147

[29] Strahinja Trecakov and Nicholas Von Wolff. 2021. Doing more with less: Growth,
improvements, and management of NMSU’s computing capabilities. In Practice
and Experience in Advanced Research Computing. 1–4.

[30] Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux
utility for resource management. In Workshop on job scheduling strategies for
parallel processing. Springer, 44–60.

https://apptainer.org/
https://docs.conda.io/en/latest/
http://github.com/hashdist/hashdist
http://brew.sh
https://lmod.readthedocs.io/en/latest/
https://mamba.readthedocs.io/en/latest/
https://pixi.sh/latest/
https://www.pkgsrc.org/
https://singularity-hpc.readthedocs.io/en/latest/
https://support.adaptivecomputing.com/torque-resource-manager-documentation/
https://support.adaptivecomputing.com/torque-resource-manager-documentation/
https://doi.org/10.1109/PMBS56514.2022.00017
https://doi.org/10.1109/PMBS56514.2022.00017
https://doi.org/10.1109/MCSE.2023.3263458
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.1145/3332186.3332219
https://doi.org/10.1145/3569951.3593607
https://doi.org/10.1145/3219104.3219147

	Abstract
	1 Introduction
	2 Software Hierarchy and Environment Modules
	3 The Software Stack tool
	3.1 Important Terminology and the SStack Hierarchy
	3.2 Installation
	3.3 SStack Types

	4 Use Cases and Features
	4.1 Example of installing Spack stack using SStack tool
	4.2 Module files and search

	5 Summary
	Acknowledgments
	References

