
Can Architecture Design Help Eliminate Some
Common Vulnerabilities?

Strahinja Trecakov∗, Casey Tran†, Abdel-Hameed Badawy‡, Nafiul Siddique‡, Jaime Acosta§, Satyajayant Misra∗
∗Computer Science, New Mexico State University
†Computer Science, Humboldt State University

‡Klipsch School of Electrical and Computer Engineering, New Mexico State University
§Army RDECOM ARL, White Sands Missile Range

Abstract—As technology improves in size and the number of
smart devices increases, security in personal devices undoubtedly
becomes an important aspect of todays life. However, the com-
plexity in hardware and software systems expose vulnerabilities
in security. Vulnerabilities may exist in many layers of systems
and would require a specific inputs or events to trigger it.
Discovery of vulnerabilities require significant time and also
system specific knowledge, and even then some are difficult to
patch.

In this paper, we study open source tools for finding potential
vulnerabilities and represent the advantages and disadvantages
in their use. We present HardVul, a vulnerability checking
tool which can be run on any architecture and reports which
vulnerabilities were found from our testbed.

I. INTRODUCTION

Today, many software producers and users want to have
bug-free products. However, due to the complexity of software
and expanding nature of software industry, this is basically
impossible. Additionally, software bugs cannot be resolved
completely with software updates–as updates resolve previ-
ous versions’ bugs they introduce new bugs that makes the
software vulnerable.

Vulnerabilities can be present and triggered by any layer of a
computer system (Figure 1). However, each vulnerability has a
certain risk level depending on what can be compromised [1].
There are several efforts/tools for finding vulnerabilities, but
they are new and not well documented. As example, the
Department of Homeland Security and the National Cyber
Security Center recently made efforts to document common
security weaknesses that lead to software vulnerabilities. They
created the Common Weaknesses Enumerator (CWE) list with
all the weaknesses found so far [2].

In this paper, we present our benchmark suite that is used
to evaluate the performance of different architectures. This
was primary developed to test our Operating System Friendly
Microprocessor Architecture (OSFA), however, we made it
applicable to other architectures for comparison studies of
e.g. , reduction of impact, overhead, and performance. The
benchmark contains binaries with traditional memory corrup-
tion vulnerabilities in e.g. , MITRE CWE list [2]. In addition
to the vulnerable binaries, the benchmark contains code that
exploits the vulnerabilities.

Fig. 1: Typical representation of layers in computer system

The benchmark suite was completed in three phases. First,
we identified vulnerabilities from CWE list. Then we de-
veloped exploits for vulnerability binaries, and finally we
evaluated our results.

II. BACKGROUND

In this section, we briefly describe OSFA, computer system
layers, their cause of vulnerability and necessary security.

A. OSFA

The OSFA is a newly patented architecture that provides
faster context switching because of it pipeline configuration
as well as its cache banks [3].They can be swapped between
execution and memory pipeline which make this fast context
switching possible. Each cache bank and memory address
contains Unix file permission bits that provide better computer
security.

B. Computer System Layers

In Figure 1, we show three basic layers. The top layer
consist of the applications with which the user interacts. The
Operating Systems (Kernel) level is the computer’s operating



system core that controls and interacts with the central pro-
cessing unit (CPU), memory, and hardware. Below the OS
layer is the hardware system with almost all devices [4].

C. Cybersecurity and Computer Security

Cyber-security is an area of national security and computer
systems security is a universal requirement in all systems at
all times. The prevalence of the recent attacks that target
political entities and figures, financial institutions, and the
Internet service providers makes research and development of
computer architectures that are designed to fend off attacks a
priority [5].

Computer security is a universal problem across computer
domains. What is needed is better computer security with less
microprocessor, OS, and application software overheads. The
patented OSFA creates secure sandboxes for each executing
process with very little overhead [3].

D. Vulnerabilities

Vulnerabilities can cause major damage to a broad spec-
trum of entities from the government, corporations, and to
the common man [6]. Unpatched software vulnerabilities are
dangerous since they may allow hackers to get into the system
through a backdoor and steal sensitive information [7]. There
are many types of software vulnerabilities and they are found
in code, design, or system architecture. Some of them are
buffer overflows, authentication issues, error handling, string
formating,interaction error, data handling, and many more.

III. RELATED WORK

A. CWE

The CWE list is a formally documented list of all known
software security weaknesses in code, design and architecture.
It is also used to help with vulnerability identification, mi-
gration and prevention. This list was developed by MITRE’s
Common Vulnerabilities and Exposures(CVE) team, a not-
for-profit organization that operates research and development
centers sponsored by the federal government working for the
public interest and no commercial interest [2]. Their orga-
nization structures each software vulnerability in CWE such
that each may be referenced according to its own vulnerability
type. Comprised of 722 and 769 CWEs for research and
development concepts, respectively, these vulnerabilities can
be classified under a hierarchical structure such that we may
use the CWEs at the generalized and higher levels of the
structure to provide a broad representation from a ”parent”
weakness to test on [8], [9].

B. Angr

In this section we present Angr, a binary analysis tool
built under a python framework. Made up of several sub
projects, it is comprised of an executable and library loader
(CLE), a library describing various architectures(archinfo), a
python wrapper around the binary code lifer VEX(PyVEX),
a code simulation engine(SimuVEX), and a data backend
to abstract away differences between static and symbolic

domains(Claripy) [10], [11]. These state-of-the-art binary anal-
ysis tools serve to make Angr one of the first open-source
binary analysis frameworks for building upon already existing
implementations of binary analysis techniques. Resulting from
these efforts is a software testing platform devised with an
intention towards systematizing the field of binary analysis.
As a result, different tools may be openly used and compared
with each other in order to further research efforts in cyber-
security.

Angr was a good candidate for testing our architecture
for vulnerability exploits because it is capable of being a
symbolically assisted fuzzing tool– ie, that it is suited to be
able to find deeper exploits. Moreover, it is open source and
meant to be used and built upon by the software security
community. Its purpose is explicitly to provide a tool that
will be useful in reproducing, improving, and creating binary
analysis techniques. Adding to the security community, this
in turn means that our application of Angr may also be able
to test other architecture simulations combining the static and
dynamic techniques implemented in Angr.

Individually, Static and dynamic analysis techniques alone
each have their respective tradeoffs. Static analysis alone is
good for finding concretized general inputs but cannot provide
to specific and traceable paths. However, dynamic analysis
techniques are good for finding specific inputs and tracing.
These techniques when put together are a called ”concolic”
analysis due to the concrete aspect of a static technique and
the symbolic aspect of a dynamic execution. As we shall see
in the next section, Angr acts as the symbolic tracer of Driller,
being able to guide its fuzzing engine into deeper paths and
hence finding deeper vulnerabilities. But before moving on to
the next section, it is worth mentioning the type of Fuzzer
that Driller utilizes as the primary tool for producing general
inputs for very high automated code coverage.

C. Driller is AFL + Angr

In the previous section we discussed the advantages of
Angr as a concolic execution tool utilizing symbolic and
concrete techniques of binary analysis. In this section we
will present an overview of Driller. Driller is an excavation
tool that makes use of the American Fuzzy Lop (AFL) as its
fuzzing engine and Angr as its concolic style execution tool.
Fuzzing is an automated software testing technique that excels
at producing general inputs. In regards to AFL, the fuzzing
program automatically creates and mutates inputs along a path
until it finds a vulnerability [12].

Working in tandem with Angr as its symbolic execution
engine, American Fuzzy Lop (AFL) is utilized in Driller as
its fuzzing engine . This results for a powerful binary analysis
tool that is capable of ”Symbolic-assisted fuzzing” [10]. Where
AFL is used to quickly find solutions for general inputs and
code coverage from its genetic mutation algorithm for finding
paths which are ”interesting”, Angr is good at finding solutions
for specific inputs that a program application may require
in order to find vulnerabilities that may exist deeper within
the code path. As a result, deeper vulnerabilities are able



to be discovered that would otherwise not be possible by
using one of the techniques alone. Secondly, path explosion
from using a dynamic symbolic analysis is mitigated due to
the Fuzzer thus resulting in more scalability. Furthermore,
the incompletenesses of fuzzing from what it declares as an
”uninteresting path” are more thoroughly executed through
Angr as the concolic execution tool [13], [14]. Now we shall
see how Driller works.

Angr and AFL both utilize static analysis techniques. The
difference is that Angr also uses dynamic symbolic executions
in conjunction with a symbolic tracer to retrieve paths. So,
while Angr has a static analysis state running parallel with its
dynamic symbolic executions to generate concretized inputs
from the set of constraints resulting from the dynamic ex-
ecutions, AFL generates concretized inputs from its genetic
mutation algorithm [10], [13]. The former results in more
specific and ”harder” to find pathways while the Fuzzer offers
fast functional code coverage . Together, Driller makes deeper
excavation possible.

Driller works like this, first it runs AFL and generates static
inputs until it cannot find anymore ”valuable/interesting” paths
or stops at a timeout specified either by default or the user. For
each interesting input generated by the genetic algorithm of
AFL, Angr first symbolically executes the input and gets the
trace of basic blocks taken by the input from constraints used
to generate them by the static analysis state running parallel.
Path explosion is thus mitigated as a result of AFLs algorithm
and interesting and uninteresting inputs are excavated more
deeply with the concolic analysis of Angr.

IV. DESIGN MODEL AND EVALUATION

char pass[] = "abcd";
int validate_user() {

char buff[5];
printf("Enter your password:\n -> ");
gets(buff);
return !strcmp(buff, pass);

}

int main(int argc, char *argv[]){
if(validate_user()){

printf("Your password was correct\n");
}
else{

printf("Your password was not correct\n");
}
return 0;

}

Fig. 2: CWE-120 Buffer Overflow based example [8]

A. Design Model

In this section, we present the first two phases of our
benchmark. We used the CWE list to identify common vulner-
abilities that will help us test different architectures. We picked

a couple of known vulnerabilities from each category such
as stack-based buffer overflow, heap-based buffer overflow,
integer overflow, incorrect pointer scaling, and expired pointer
dereferences. In this paper, we present a vulnerability based
on CWE-120: Buffer Copy without Checking Size of Input.
This is a Classic Buffer Overflow example where a program
allows an input larger that the buffer size (Figure 2).

During the second phase, we studied two open source
tools: Angr and Driller. Driller is a great candidate because
it uses concolic execution to find all paths in a program [13].
Unfortunately, we were not able to modify Driller and make
it work on the broader range of platforms. Some of the
reasons are that Driller has a poor support for Linux/ELF
binaries since it was primary built for DARPA’s Cyber Grand
Challenge and supports only DECREE binaries [15]. Secondly,
the Angr’s SimProcedures module does not support all of C
libraries and we can not rely on the output. Moreover, Driller
only detects segmentation faults and it will require a lot of
manual analysis and modifications in order to recognize other
vulnerabilities [16]. After releasing all this, we decided to
develop simple vulnerability analysis tool.

First, we developed exploits for vulnerability binaries by
writing source code for all vulnerabilities that are in our
test-suite. We also gathered all the object dumps (objdumps)
and traces of our test cases to be able to say when we
have a memory corruption and when not. Then we wrote
a simple program that runs our test-suite with inputs that
trigger vulnerabilities, get information dumps and compares
them with ones that do not trigger vulnerabilities.

0x7fffffffd9b0:0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00

0x7fffffffd9b8:0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00

0x7fffffffd9c0:0xe0 0xd9 0xff 0xff 0xff 0x7f
0x00 0x00

0x7fffffffd9c8:0xb7 0x06 0x40 0x00 0x00 0x00
0x00 0x00

Fig. 3: Representation of the stack pointer before inputed
password

B. Evaluation

After gathering all the outputs, we analyzed results in few
ways. First, we made sure that our HardVul tool works prop-
erly, by comparing traces of our tests with inputs that do and
do not trigger vulnerabilities. If we look deeper into (Figure 3),
we can see 32 bytes representation of stack pointer before any
password was provided. However, (Figure 4) represent stack
pointer after ”AAAAAA” was inputed as a password. Clearly,
even if the character array buff was declared with size 5, input
bigger than 5 is being accepted and stored. This is buffer
overflow, where the part of the input that does not fit in the
buffer keeps being written in adjacent memory addresses. This



0x7fffffffd9b0:0x41 0x41 0x41 0x41 0x41 0x41
0x00 0x00

0x7fffffffd9b8:0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00

0x7fffffffd9c0:0xe0 0xd9 0xff 0xff 0xff 0x7f
0x00 0x00

0x7fffffffd9c8:0xb7 0x06 0x40 0x00 0x00 0x00
0x00 0x00

Fig. 4: Representation of the stack pointer after inputed
”AAAAAA” an a password

event results in program malfunction or segmentation faults. If
the input is carefully selected, targeted addresses value can be
altered to jump to places in the program that normal execution
would not execute.

Then we preformed our benchmark testing on few different
architectures using gem5 simulator. This simulator supports
variety different Instruction Set Architectures(ISA), such as
ARM, Alpha, SPARC, and x86. It also has two different modes
that are full system and system call emulation. Difference be-
tween these two modes is that the full system will boot Linux
and allow system calls that incorporate OS into simulation. On
the other hand, system call emulator does not allow that [17].

Our current test-suite contains over 100 vulnerabilities that
are grouped based on the CWE list. The groups are stack based
buffer overflow, heap based buffer overflow, buffer underwrite,
buffer overread, buffer underread, integer overflow, and integer
underflow. Moreover, some of vulnerabilities in our test-suite
may also trigger other weaknesses that are documented in the
CWE list.

After performing our benchmark testings using gem5’s full
system mode on ARM, Alpha and x86, we noticed that pro-
gram memory traces are slightly different because of different
architectures. However, they all had the same results when it
comes to vulnerability test.

V. CONCLUSIONS AND FUTURE WORK

After performing both manual and automatic analysis on
a couple of different architectures using our HardVul tool,
we found some interesting data that gives us more confidence
that architecture design can help prevent some vulnerabilities.
However, this may open space for some other/new bugs.

Once the OSFA simulator is done, we will expand this
research by testing our HardVul tool on it and include more
vulnerabilities that we think OSFA design can prevent from.
We will try to make our tool user friendly, and make it an
open source tool.

On the other hand, the research done in this paper needs
to be expanded to look more deeply into this problem and
try to include as much vulnerabilities as possible. Also it
would be nice to create a test-suite that includes each known
vulnerability category.

REFERENCES

[1] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, 2012,
pp. 771–781.

[2] R. A. Martin and S. Barnum, “Common weakness enumeration (cwe)
status update,” Ada Lett., vol. XXVIII, no. 1, pp. 88–91, Apr. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1387830.1387835

[3] P. Jungwirth and P. La Fratta, “Os friendly microprocessor architecture:
Hardware level computer security,” in SPIE Defense+ Security. Inter-
national Society for Optics and Photonics, 2016, pp. 982 602–982 602.

[4] Y. Shi, D. V. Murillo, S. Wang, J. Cao, and M. Zheng, “A command-
level study of linux kernel bugs,” in Computing, Networking and
Communications (ICNC), 2017 International Conference on. IEEE,
2017, pp. 798–802.

[5] P. Jungwirth and A.-H. Badawy, “Cybersecurity and the osfa architec-
ture.”

[6] O. H. Alhazmi and Y. K. Malaiya, “Application of vulnerability dis-
covery models to major operating systems,” IEEE Transactions on
Reliability, vol. 57, no. 1, pp. 14–22, 2008.

[7] A. M. Algarni and Y. K. Malaiya, “Most successful vulnerability
discoverers: Motivation and methods,” in Proceedings of the Interna-
tional Conference on Security and Management (SAM). The Steering
Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2013, p. 1.

[8] “Cwe list,” https://cwe.mitre.org/data/published/.
[9] “Nvd list,” https://nvd.nist.gov/vuln/categories/.

[10] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in Security
and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 138–157.

[11] “Angr documentation,” http://angr.io/.
[12] “Fuzzer,” https://github.com/shellphish/fuzzer/.
[13] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,

Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, 2016,
pp. 1–16.

[14] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for
security testing,” Queue, vol. 10, no. 1, p. 20, 2012.

[15] N. Lee, “Darpas cyber grand challenge (2014–2016),” in Counterterror-
ism and Cybersecurity. Springer, 2015, pp. 429–456.

[16] “Driller source code,” https://github.com/shellphish/driller/.
[17] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.


