AVANT: An Automated Vulnerability Analysis Tool for

Assessing Security Vulnerabilities in Processor Architectures

S T ATE Strahinja Trecakov*, Satyajayant Misra*, Abdel-Hameed Badawy*, and Jaime Acosta T [ffees ey

UNIVERSITY

“New Mexico State University

TU.S. Army Research Laboratory, White Sands Missile Range, NM A

{trecakov, misra, badawy}@nmsu.edu, jaime.c.acosta.civ@mail.mil

. INTRODUCTION

Vulnerabilities can be present and triggered by any layer of a computer
system (Figure 1). However, each vulnerability has a certain risk level
depending on what can be compromised.

User Applications

Mode

Operating System

4

Hardware Memory, CPU and Peripheral
Devices

Figure 1: Typical representation of layers in computer system.

We present Automated Vulnerability Analysis Tool (AVANT), a
vulnerability checking tool that 1s architecture-agnostic and reports
vulnerabilities found for binaries 1n our test suite.

[1l. DESIGN MODEL

4 N

AVANT

CWE 121 — Stack-based Buffer Test cases: From NSA’s A simple vulnerability tool:
Overtlow Juliet Test Suite. Compiles vulnerability test
CWE 122 — Heap-based Bufter suite, runs the analysis
Overtlow Modified and tested on using Address Sanitizer
CWE 124 — Buffer Underwrite Windows 7, tool and reports found
CWE 126 — Buffer Over-read Ubuntu 16.04, vulnerabilities.

CWE 127 — Buffer Under-read High Sierra 10.13.2.
CWE 190 — Integer Overflow

CWE 191 - Integer Underflow \ / \\ /

V. PRELIMINARY RESULTS

30

2

Ul

2

(@}

1

v

1

o

Ul

M Total number of vulnerabilities.
B Number of vulnerabilities that AVANT
reported on x86_64 architecture.
Number of vulnerabilities that AVANT
reported on ARM architecture.
Number of vulnerabilities that have

‘ differerent stack values(x86_64 vs ARM).

CWE 121 CWE 122 CWE 124 CWE 126 CWE 127 CWE 190 CWE 191

Figure 6: Representation of the total number of test cases ran using AVANT on both x86 64 and ARM
architectures and the number of reported vulnerabilities.

o

SUMMARY: AddressSanitizer: stack-buffer-underflow SUMMARY: AddressSanitizer: stack-buffer-underflow (/home/pi/OSFA -

(/home/strecako/Documents/OSFA - compiled/OSFA-

Benchmarks/testcases/CWE124 Buffer Underwrite/s01/CWE124 Buffer Unde Benchmarks/testcases/CWE124_Buffer_Underwrite/s01/CWE124_Buffer

rwrite_ char declare memcpy 01.out+0x4a2b44) Underwrite char declare memcpy 0l.out+0xab6db) in asan memset

Shadow bytes around the buggy address: Shadow bytes around the buggy address:
0x10002e003£50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x2fd21e40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x10002e00360: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x2fd21e50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x10002e003£70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x2fd21e60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x10002e00330: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x2fd21e70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x10002e00390: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x2fd21e80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=>0x10002e003fa0: 00 00 00 00 f1 f1 1 [f1]00 00 00 00 00 00 00 00 =>0x2£d21¢90: 00 00 00 00 00 00 00 00 00 00 00 00 f1[£1]00 00
0x10002¢003fb0: 00 00 00 00 04 £3 £3 3 £3 £3 £3 £3 00 00 00 00 0x2fd21ea0: 00 00 00 00 00 00 00 00 00 00 04 13 £3 3 £33
0x10002e003fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x2fd21eb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x10002e003£d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x2fd21ec0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x10002e003fe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x2fd21ed0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x10002e003£f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x2fd21ee0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Figure 7: Stack representation of the CWE124 Buffer Underwrite Figure 8: Stack representation of the CWE124 Buffer Underwrite

test case ran on x86 64. test case ran on Raspberry P1 3.

Il. MOTIVATION

Technology Number of Larger attack
innovations and smart devices surface
improvements increases

Below 1s an example of a buffer overflow vulnerability:

char pass|[] = "abcd";
int validate_user () {
char buff[5];
printf ("Enter your password:\n -> ");
gets (buff);
return !strcmp(buff, pass);

}
Figure 2: CWE-120 Buffer Overflow based example.

Ox7ff£fff£f£fd900:0x00 0x00 0x00 O0x00 0x00 0x0O0 Ox7fffffffd9b0:0x41 O0x41 0x41 0x41 O0x41 0x41
0x00 0x00 0x00 0x00
Ox7fffffffd908:0x00 0x00 0x00 O0x00 O0x00 0x00 Ox7fffffffd908:0x00 0x00 O0x00 O0x00 O0x00 0x00
0x00 0x00 0x00 0x00
Ox7fff£f££fd9c0:0xe0 0xd9 Oxff Oxff Oxff Ox7f Ox7TLE£££££d3c0:0xe0 O0xdd Oxff Oxff Oxff Ox7f
OXOO OXOO 0x00 0x00
OxTEFEEEEFA9C8:0xb7 0x06 0x40 0x00 0x00 0x00 OxJLLLLLLLd9CE:0xbT 0x06 0x20 0x00 0x00 0x00
0x00 0x00
0x00 0x00
Figure 3: Representation of the stack pointer Figure 4: Representation of the stack pointer after
before inputted password. inputted "TAAAAAA” as a password.

In this buffer overflow the part of the input that does not fit in the buffer
keeps being written 1n adjacent memory address.

Meltdown and Spectre attacks showed us that a bug in Intel chips
allows access to higher parts of computer’s memory.

V. EXPERIMENTAL SETUP

100+ Test cases

E Optiona| VFP Coprocessor]
Controller
] : []
[TrustZone™ :I
TCRAM O enabled TCRAM 0
] TCRAM 1 ARMIT™ corel T cpraM 1] b t
[£ Memory Management] . Units
1N : e 1 ~
e AMBA AXI Interface S
ache -an 64 Branch &
[— :I 64 Systembus 256 " 128 I|.1teger
~— Instruction Data DMA Peripheral — Contrel Registers Registers
| 2~ Interface Interface Port] ' .
oz
128
O <] I R L s
Backside Bus
l:l D D D ‘:[D D ‘j from / to L3 Cache
Figure 5: ARM architecture. Figure 6: Intel x86_ 64 architecture.

Architecture armv71 x86 64

Byte Order: Little Endian Little Endian
CPU(s): 4 8

On-line CPU(s) list: 0-3 0-7
Thread(s) per core: 1 2

Core(s) per socket: 4 4

Socket(s): 1 1

Model: 4 94

Model name: ARMvV7 Processor rev 4 (v71) Intel(R) Core(TM) 17-6700K CPU @ 4.00GHz
CPU max MHz: 1200.0000 4200.0000
CPU min MHz: 600.0000 800.0000
BogoMIPS: 38.40 8015.91

VI. CONCLUSION & FUTURE WORK

These results show us that both Intel x86 64 and ARM architectures report same vulnerabilities;
this 1s good from the security standpoint. The interesting part is that same reported vulnerabilities
on two architectures differ in their stack values/addresses which can lead to some other attacks on
the security of those architectures.

The research done in this project will be extended to look more deeply into this problem by
expanding the test set in order to identify more vulnerabilities. We are developing a test suite that
includes binaries with annotated and categorized vulnerabilities.

VIl. REFERENCE

[1] Trecakov, S., Tran, C., Badawy, H., Siddique, N., Acosta, J., & Misra, S. (2017, October).
Can Architecture Design Help Eliminate Some Common Vulnerabilities?. In 2017 IEEE 14"
International Conference on Mobile Ad Hoc and Sensor Systems (MASS) (pp.590-593). IEEE.

